Amazing Science
1.1M views | +18 today
Follow
Amazing Science
Amazing science facts - 3D_printing • aging • AI • anthropology • art • astronomy • bigdata • bioinformatics • biology • biotech • chemistry • computers • cosmology • education • environment • evolution • future • genetics • genomics • geosciences • green_energy • language • map • material_science • math • med • medicine • microscopy • nanotech • neuroscience • paleontology • photography • photonics • physics • postings • robotics • science • technology • video
Your new post is loading...
Scooped by Dr. Stefan Gruenwald
Scoop.it!

First 3D Printed Footbridge In Amsterdam Open To Pedestrians

First 3D Printed Footbridge In Amsterdam Open To Pedestrians | Amazing Science | Scoop.it

Following four years of planning and research, the world's first 3D printed footbridge recently opened to the public in Europe.

The almost 40-foot bridge, unveiled last month, was built by Dutch company MX3D and will serve as a "living laboratory" in Amsterdam's city center.

Researchers and engineers at Imperial College London were able to 3D-print the bridge — which now serves pedestrians and cyclists crossing Amsterdam's Oudezijds Achterburgwal canal.

From Guns To Chocolate: The Possibilities Of 3-D Printing
"A 3D-printed metal structure large and strong enough to handle pedestrian traffic has never been constructed before," said Imperial College London professor Leroy Gardner in a news release.

 

A 12-meter 3D-printed pedestrian bridge designed by Joris Laarman and built by Dutch robotics company MX3D has been opened in Amsterdam six years after the project was launched.nAna Fernandez/SOPA Images/LightRocket via Gett Designers first created the concept for the bridge in 2015, with the goal of making an "exceptionally efficient structure," emphasizing both simplicity and safety, according to Popular Mechanics.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Researchers 3D Printing High Resolution Tricalcium Phosphate Scaffolds for Bone Regeneration

Researchers 3D Printing High Resolution Tricalcium Phosphate Scaffolds for Bone Regeneration | Amazing Science | Scoop.it

In ‘Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration,’ researchers examine how to make complex, stable scaffolds based on β-tricalcium. Typically, there are obstacles to finding materials and techniques suitable for creating structures capable of sustaining cell life.

 

The authors are aware of the necessities in tissue engineering: the material cannot be toxic, obviously, as that would cause further health issues in a patient, biodegradability is key, with the material being absorbed along with suitable bone growth, and porosity and density must be suitable too, balanced out with proper strength.

 

DLP 3D printing has proven successful for creating scaffolds due to comprehensive irradiation over the whole cross-section, and shorter processing times in comparison to other processes. The researchers focused on DLP 3D printing for this study, in relation to the use of calcium phosphate structures that are not only complex and high resolution but also strong. The team assessed both rectilinear grid structure and hexagonal geometries (at 50 and 75 percent porosity) for mechanical properties, with complete chemical analyses performed before and after bioprinting.

No comment yet.
Rescooped by Dr. Stefan Gruenwald from Alan Charky - Vacuum Furnaces
Scoop.it!

Team 3D Prints Giant Wind Turbine Mold

Team 3D Prints Giant Wind Turbine Mold | Amazing Science | Scoop.it

In collaboration with Oak Ridge National Laboratory's Manufacturing Demonstration Facility Team and turbine blade manufacturer TPI Composites, Sandia National Laboratories 3D printed a massive mold to produce wind turbine blades.

 

Sandia researchers have been working on wind turbines for the better part of 40 years; it’s part of the lab's effort to make the renewable energy more affordable. However, building wind turbine prototypes takes a lot of time and effort, and each requires custom molds that take up to 16 months to complete before the blade can be developed and tested.

 

Through the use of 3D printing, the team was able to cut mold development time by more than 80 percent, going from 16 months of development time down to 3 months. The work cut out more than a year of labor.

 

The 13-meter blade mold is relatively small compared to other blades currently on the market and under development — for example, GE's Haliade-X blades will be 107 meters long. However, by cutting design and development time and cost, engineers could take greater risks during the prototype phase that could potentially accelerate innovation in the market.


Via Alan Charky
No comment yet.
Rescooped by Dr. Stefan Gruenwald from Fragments of Science Archive
Scoop.it!

'Chemical MP3 Player' Can 3D Print Pharmaceuticals On-Demand from Digital Code

'Chemical MP3 Player' Can 3D Print Pharmaceuticals On-Demand from Digital Code | Amazing Science | Scoop.it

Have you ever taken your old compact discs and converted them to MP3 files so you could listen to your favorite music on your laptop, or through a portable MP3 device that’s much smaller than an unwieldy portable CD player? Now, researchers from the University of Glasgow are working on a very similar process, but instead of music files, they are using a chemical-to-digital converter to digitize the process of drug manufacturing; a chemical MP3 player, if you will, that can 3D print pharmaceuticals on demand.

 

3D printing in the pharmaceutical field is a fascinating concept, though not a new one. But this ‘Spotify for chemistry’ concept is new: it’s the first time we’ve seen an approach to manufacturing pharmaceuticals using digital code. According to Science, the University of Glasgow team “tailored a 3D printer to synthesize pharmaceuticals and other chemicals from simple, widely available starting compounds fed into a series of water bottle–size reactors.”


Via Mariaschnee
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

First 3-D printed objects that connect to WiFi without the use of electronics

First 3-D printed objects that connect to WiFi without the use of electronics | Amazing Science | Scoop.it
Imagine a bottle of laundry detergent that can sense when you're running low on soap—and automatically connect to the internet to place an order for more.

 

 

University of Washington researchers are the first to make this a reality by 3-D printing plastic objects and sensors that can collect useful data and communicate with other WiFi-connected devices entirely on their own.

 

With CAD models that the team is making available to the public, 3-D printing enthusiasts will be able to create objects out of commercially available plastics that can wirelessly communicate with other smart devices. That could include a battery-free slider that controls music volume, a button that automatically orders more cornflakes from Amazon or a water sensor that sends an alarm to your phone when it detects a leak.

 

"Our goal was to create something that just comes out of your 3-D printer at home and can send useful information to other devices," said co-lead author and UW electrical engineering doctoral student Vikram Iyer. "But the big challenge is how do you communicate wirelessly with WiFi using only plastic? That's something that no one has been able to do before."

 

The system is described in a paper presented Nov. 30 at the Association for Computing Machinery's SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Peugeot and Divergent: This Is the World's First 3D-Printed "Supercar"?

Peugeot and Divergent: This Is the World's First 3D-Printed "Supercar"? | Amazing Science | Scoop.it

 

At the Los Angeles Auto Show, automaker Divergent 3D showed off their 3D-printed Blade Supercar. The 635 kilogram (1,400 pound) car is made of a combination of aluminum and carbon fiber; accelerates to 97 kilometers per hour (60 miles per hour) in 2.2 seconds with its 700 hp engine; and can use either gasoline or compressed natural gas as fuel.

 

The Blade Supercar debuted last year in June, heralding the company’s radical, environmentally-sustainable approach to manufacturing. Divergent calls the manufacturing approach NODE, where they 3D print aluminum nodes joined together by carbon fiber tubing.

 

The process, which is similar to using Lego blocks, requires less capital and uses up fewer materials. The ease of assembly means that even semi-skilled workers can run the process.As an added bonus, Divergent 3D’s cars are 90 percent lighter and more durable than cars built with traditional techniques.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

3-D-printed magnets outperform conventional versions, conserve rare earth materials

3-D-printed magnets outperform conventional versions, conserve rare earth materials | Amazing Science | Scoop.it

Scientists fabricated isotropic, near-net-shape, neodymium-iron-boron (NdFeB) bonded magnets at DOE's Manufacturing Demonstration Facility at ORNL using the Big Area Additive Manufacturing (BAAM) machine. The result, published in Scientific Reports, was a product with comparable or better magnetic, mechanical, and microstructural properties than bonded magnets made using traditional injection molding with the same composition.

 

The additive manufacturing process began with composite pellets consisting of 65 volume percent isotropic NdFeB powder and 35 percent polyamide (Nylon-12) manufactured by Magnet Applications, Inc. The pellets were melted, compounded, and extruded layer-by-layer by BAAM into desired forms.

 

While conventional sintered magnet manufacturing may result in material waste of as much as 30 to 50 percent, additive manufacturing will simply capture and reuse those materials with nearly zero waste, said Parans Paranthaman, principal investigator and a group leader in ORNL's Chemical Sciences Division.

 

Using a process that conserves material is especially important in the manufacture of permanent magnets made with neodymium, dysprosium—rare earth elements that are mined and separated outside the United States. NdFeB magnets are the most powerful on earth, and used in everything from computer hard drives and head phones to clean energy technologies such as electric vehicles and wind turbines.

 

The printing process not only conserves materials but also produces complex shapes, requires no tooling and is faster than traditional injection methods, potentially resulting in a much more economic manufacturing process, Paranthaman said.

 

"Manufacturing is changing rapidly, and a customer may need 50 different designs for the magnets they want to use," said ORNL researcher and co-author Ling Li. Traditional injection molding would require the expense of creating a new mold and tooling for each, but with additive manufacturing the forms can be crafted simply and quickly using computer-assisted design, she explained.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Models of hearts, arteries, bones and brains are now 3-D printed out of biological materials

Models of hearts, arteries, bones and brains are now 3-D printed out of biological materials | Amazing Science | Scoop.it

As of this month, over 4,000 Americans are on the waiting list to receive a heart transplant. With failing hearts, these patients have no other options; heart tissue, unlike other parts of the body, is unable to heal itself once it is damaged. Fortunately, recent work by a group at Carnegie Mellon could one day lead to a world in which transplants are no longer necessary to repair damaged organs.


"We've been able to take MRI images of coronary arteries and 3-D images of embryonic hearts and 3-D bioprint them with unprecedented resolution and quality out of very soft materials like collagens, alginates and fibrins," said Adam Feinberg, an associate professor of Materials Science and Engineering and Biomedical Engineering at Carnegie Mellon University. Feinberg leads the Regenerative Biomaterials and Therapeutics Group, and the group's study was published in the October 23 issue of the journal Science Advances. A demonstration of the technology can be viewed online.


"As excellently demonstrated by Professor Feinberg's work in bioprinting, our CMU researchers continue to develop novel solutions like this for problems that can have a transformational effect on society," said Jim Garrett, Dean of Carnegie Mellon's College of Engineering. "We should expect to see 3-D bioprinting continue to grow as an important tool for a large number of medical applications."


Traditional 3-D printers build hard objects typically made of plastic or metal, and they work by depositing material onto a surface layer-by-layer to create the 3-D object. Printing each layer requires sturdy support from the layers below, so printing with soft materials like gels has been limited.


"3-D printing of various materials has been a common trend in tissue engineering in the last decade, but until now, no one had developed a method for assembling common tissue engineering gels like collagen or fibrin," said TJ Hinton, a graduate student in biomedical engineering at Carnegie Mellon and lead author of the study.


"The challenge with soft materials -- think about something like Jello that we eat -- is that they collapse under their own weight when 3-D printed in air," explained Feinberg. "So we developed a method of printing these soft materials inside a support bath material. Essentially, we print one gel inside of another gel, which allows us to accurately position the soft material as it's being printed, layer-by-layer."


One of the major advances of this technique, termed FRESH, or "Freeform Reversible Embedding of Suspended Hydrogels," is that the support gel can be easily melted away and removed by heating to body temperature, which does not damage the delicate biological molecules or living cells that were bioprinted. As a next step, the group is working towards incorporating real heart cells into these 3-D printed tissue structures, providing a scaffold to help form contractile muscle.


Bioprinting is a growing field, but to date, most 3-D bioprinters have cost over $100,000 and/or require specialized expertise to operate, limiting wider-spread adoption. Feinberg's group, however, has been able to implement their technique on a range of consumer-level 3-D printers, which cost less than $1,000 by utilizing open-source hardware and software.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Amazing Story: Man Saves Wife's Sight by 3D Printing Her Tumor

Amazing Story: Man Saves Wife's Sight by 3D Printing Her Tumor | Amazing Science | Scoop.it

Two highly motivated stakeholders (the patient and her husband) had access to the patient’s medical data and were able to enhance its value using new era tools (software and 3D printing) and bring it to the docs – clearer – so they could better apply their clinical skills. Specifically, the physicians who read the scans before had not seen the situation clearly. With the tumor printed, a better picture emerged. That is adding value in medicine.


Want to print your medical image? Ask your doctor for your DICOM files and download 3D Slicer (slicer.org). Then use the Region Growing tool to segment the image. Extract a 3D mesh of the surface, save as an STL, and use ParaView (paraview.org) to simplify it to a manageable number of triangles. To see more details, check out Make: volume 42, page 83, or visit makezine.com/ projects/3d-print-your-medical-scan.


Full story is here: http://tinyurl.com/nal2oac

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Researchers print out self-learning robots

Researchers print out self-learning robots | Amazing Science | Scoop.it

When the robots of the future are set to extract minerals from other planets, they need to be both self-learning and self-repairing. Researchers at Oslo University have already succeeded in producing self-instructing robots on 3D printers.


“In the future, robots must be able to solve tasks in deep mines on distant planets, in radioactive disaster areas, in hazardous landslip areas and on the sea bed beneath the Antarctic. These environments are so extreme that no human being can cope. Everything needs to be automatically controlled. Imagine that the robot is entering the wreckage of a nuclear power plant. It finds a staircase that no-one has thought of. The robot takes a picture. The picture is analyzed. The arms of one of the robots is fitted with a printer. This produces a new robot, or a new part for the existing robot, which enables it to negotiate the stairs,” hopes Associate Professor Kyrre Glette who is part of the Robotics and intelligent systems research team at Oslo University’s Department of Informatics.


Even if Glette’s ideas remain visions of the future, the robotics team in the Informatics Building have already developed three generations of self-learning robots.


Professor Mats Høvin was the man behind the first model, the chicken-robot named “Henriette”, which received much media coverage when it was launched ten years ago. Henriette had to teach itself how to walk, and to jump over obstacles. And if it lost a leg, it had to learn, unaided, how to hop on the other leg.


A few years later, Masters student Tønnes Nygaard launched the second generation robot. At the same time, the Informatics team developed a simulation program that was able to calculate what the body should look like. Just as for Henriette, its number of legs was pre-determined, but the computer program was at liberty to design the length of the legs and the distance between them.


The third generation of robots brings even greater flexibility. The simulation programme takes care of the complete design and suggests the optimal number of legs and joints.


Simulation is not enough. In order to test the functionality of the robots, they need to undergo trials in the real world. The robots are produced as printouts from a 3D printer. “Once the robots have been printed, their real-world functionalities quite often prove to be different from those of the simulated versions. We are talking of a reality gap. There will always be differences. Perhaps the floor is more slippery in reality, meaning that the friction coefficient will have to be changed. We are therefore studying how the robots deteriorate from simulation to laboratory stage,” says Mats Høvin.

No comment yet.
Rescooped by Dr. Stefan Gruenwald from Technology and Gadgets
Scoop.it!

Meet Strati, the first 3D printed car in the world

Meet Strati, the first 3D printed car in the world | Amazing Science | Scoop.it

While some people have successfully 3D printed buildings, others have taken the same approach to the car manufacturing business, as a company has just come out with a car called the Strati that’s the first 3D-printed car in the world. Scientific Americanreveals that it took Local Motors only 45 hours to build the Strati, a two-seater “neighborhood” electric car that has a range of up to 120 miles and a maximum speed of 40 mph.


Interestingly, the company plans to start selling Stratis for anywhere between $18,000 to $30,000 later this year, as it further refines its 3D-printing procedure.


“We expect in the next couple of months [printing a complete car] to be below 24 hours and then eventually get it below 10 hours, [down from 45 hours currently]” Local Motors CEO John Rogers said. “This is in a matter of months. Today, the best Detroit or Germany can do is 10 hours on a [production] line, after hundreds of years of progress.”


The car’s design was chosen from over 200 proposals submitted by Local Motors’ online community and Rogers says that the main advantage of 3D printed cars is that local communities may adopt such procedures to build cars best fitted to the resources available to them.

“In the future, you’ll still have … your Detroits that make one product the same over a million units,” the exec said. “And then I think you’ll have examples of microfactories that do things profitably at lower volumes—10,000 units, 15,000 units per year—and show the mass factories what they ought to build next.”


Local Motors chose an electric engine for the Strati because an electric powertrain was simpler to construct. Another advantage the Strati has is that it’s made from thermoplastic using a “Big Are Additive Manufacturing (BAAM) machine,” which is a fully recyclable material, meaning that it can be easily “chopped up and reprocessed back into another car.”


Even so, while using 3D printing technology to build a car might lead to less wasted material, a lot of energy might actually be required to print such vehicles.


Via Tiaan Jonker
Gemma Shannon's curator insight, September 23, 2014 2:21 PM

What's next? 3D printed buildings?! Amazing to see how far this technology has come in such a short space of time.

Farid Mheir's curator insight, September 28, 2014 7:27 PM

This is much inline with my readings on the zero marginal cost society. Being able to print your own car may not be practical of cost effective today but once it is and car 3D models are available free or low charge on the web, where will the car industry go? I understand why Tesla is building huge battery manufacturing plant as they may have seen that providing key components may be the future of the car industry?

Alexandre Armougom's curator insight, September 29, 2014 9:16 AM

This is a good utility of 3D printer.

Scooped by Dr. Stefan Gruenwald
Scoop.it!

3D-printing may revolutionize medical education

3D-printing may revolutionize medical education | Amazing Science | Scoop.it

A kit of 3D-printed anatomical body parts could revolutionize medical education and training, according to its developers at Monash University.

Professor Paul McMenamin, Director of the University’s Centre for Human Anatomy Education, said the simple and cost-effective anatomical kit would dramatically improve trainee doctors’ and other health professionals’ knowledge and could even contribute to the development of new surgical treatments.


“Many medical schools report either a shortage of cadavers, or find their handling and storage too expensive as a result of strict regulations governing where cadavers can be dissected,” he said.


“Without the ability to look inside the body and see the muscles, tendons, ligaments, and blood vessels, it’s incredibly hard for students to understand human anatomy. We believe our version, which looks just like the real thing, will make a huge difference.”


The 3D Printed Anatomy Series kit, to go on sale later this year, could have particular impact in developing countries where cadavers aren’t readily available, or are prohibited for cultural or religious reasons.


After scanning real anatomical specimens with either a CT or surface laser scanner, the body parts are 3D printed either in a plaster-like powder or in plastic, resulting in high resolution, accurate color reproductions.


Further details have been published online in the journal Anatomical Sciences Education.

ChemaCepeda's curator insight, July 23, 2014 4:22 AM

La impresión 3D también va a mejorar la manera en que nos formamos los profesionales sanitarios

Scooped by Dr. Stefan Gruenwald
Scoop.it!

Microrobotic technique combines 3D printing and tissue engineering

Microrobotic technique combines 3D printing and tissue engineering | Amazing Science | Scoop.it

Researchers at Brigham and Women's Hospital (BWH) and Carnegie Mellon University have introduced a unique micro-robotic technique to assemble the components of complex materials, the foundation of tissue engineering and 3D printing, described in the Jan. 28, 2014, issue of Nature Communications ("Untethered micro-robotic coding of three-dimensional material composition").


Tissue engineering and 3D printing have become vitally important to the future of medicine for many reasons. The shortage of available organs for transplantation, for example, leaves many patients on lengthy waiting lists for life-saving treatment. Being able to engineer organs using a patient's own cells can not only alleviate this shortage, but also address issues related to rejection of donated organs. Developing therapies and testing drugs using current preclinical models have limitations in reliability and predictability. Tissue engineering provides a more practical means for researchers to study cell behavior, such as cancer cell resistance to therapy, and test new drugs or combinations of drugs to treat many diseases.


The presented approach uses untethered magnetic micro-robotic coding for precise construction of individual cell-encapsulating hydrogels (such as cell blocks). The micro-robot, which is remotely controlled by magnetic fields, can move one hydrogel at a time to build structures. This is critical in tissue engineering, as human tissue architecture is complex, with different types of cells at various levels and locations. When building these structures, the location of the cells is significant in that it will impact how the structure will ultimately function. "Compared with earlier techniques, this technology enables true control over bottom-up tissue engineering," explains Tasoglu.


Tasoglu and Demirci also demonstrated that micro-robotic construction of cell-encapsulating hydrogels can be performed without affecting cell vitality and proliferation. Further benefits may be realized by using numerous micro-robots together in bioprinting, the creation of a design that can be utilized by a bioprinter to generate tissue and other complex materials in the laboratory environment."


Our work will revolutionize three-dimensional precise assembly of complex and heterogeneous tissue engineering building blocks and serve to improve complexity and understanding of tissue engineering systems," said Metin Sitti, professor of Mechanical Engineering and the Robotics Institute and head of CMU's NanoRobotics Lab.


"We are really just beginning to explore the many possibilities in using this micro-robotic technique to manipulate individual cells or cell-encapsulating building blocks." says Demirci. "This is a very exciting and rapidly evolving field that holds a lot of promise in medicine."

Sieg Holle's curator insight, February 16, 2014 11:23 AM

Towards our age of abundance and self sufficiency and personal choice?

Piotr Kubis 's curator insight, November 30, 2021 12:54 AM
Inżynieria tkankowa w połączeniu z drukiem 3D może o wiele zmniejszyć czas oczekiwania na narządy potrzebne do przeszczepu ratującego życie dużej ilości pacjentów, którzy czekają często w długich kolejkach na dawce, który uratuje im życie. 
good health's curator insight, January 11, 1:13 PM

Acquista Online La Prescrizione Di Perdita Di Peso
Crediamo che i farmaci a volte possano essere molto urgenti da assumere. Se hai urgente bisogno di farmaci, possiamo anche fornirti una consegna espressa,


https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/

https://globalefarmacia.com/Prodotto/acquista-ozempic-online/
https://globalefarmacia.com/Prodotto/acquista-victoza-online/
https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/
https://globalefarmacia.com/Prodotto/acquista-mysimba-online/
https://globalefarmacia.com/Prodotto/acquista-wegovy-online/
https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/
https://globalefarmacia.com/Prodotto/acquista-phentermine-online/
https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/
https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/
https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/
https://globalefarmacia.com/Prodotto/acquista-adipex-online/
https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/
https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/
https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/
https://globalefarmacia.com/Prodotto/acquista-percocet-online/
https://globalefarmacia.com/Prodotto/acquista-stilnox-online/
https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/
https://globalefarmacia.com/Prodotto/acquista-subutex-online/
https://globalefarmacia.com/Prodotto/acquista-metadone/
https://globalefarmacia.com/Prodotto/acquista-botox-online/
https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/
https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/
https://globalefarmacia.com/Prodotto/acquista-adma-online/
https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/
https://globalefarmacia.com/Prodotto/acquista-ativan-online/
https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/
https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/
https://globalefarmacia.com/Prodotto/acquista-codeina-online/
https://globalefarmacia.com/Prodotto/acquista-demerol-online/
https://globalefarmacia.com/Prodotto/acquista-depalgo-online/
https://globalefarmacia.com/Prodotto/acquista-diazepam-online/
https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/
https://globalefarmacia.com/Prodotto/acquista-endocet-online/
https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/
https://globalefarmacia.com/Prodotto/acquista-opana-online/
https://globalefarmacia.com/Prodotto/acquista-vicodin-online/
https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/
https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/
https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/
https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/


<a href="https://globalefarmacia.com/Prodotto/acquista-ozempic-online/">acquista-ozempic-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-victoza-online/">acquista-victoza-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/">acquista-mounjaro-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-mysimba-online/">acquista-mysimba-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-wegovy-online/">acquista-wegovy-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/">acquistare-saxenda-6mg-ml-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-phentermine-online/">acquista-phentermine-online</a>;
<a href="https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/">ephedrine-hcl-30mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/">acquista-ossicodone-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/">acquista-oxycontin-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-percocet-online/">acquista-percocet-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-stilnox-online/">acquista-stilnox-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/">acquista-suboxone-8mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-subutex-online/">acquista-subutex-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-metadone/">acquista-metadone</a>;
<a href="https://globalefarmacia.com/Prodotto/buy-vyvanse-online/">buy-vyvanse-online</a>;
<a href="https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/">a-215-ossicodone-actavis</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/">acquista-adderall-30mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-adipex-online/">acquista-adipex-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-adma-online/">acquista-adma-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-ativan-online/">acquista-ativan-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-botox-online/">acquista-botox-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/">acquista-cerotti-al-fentanil</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/">acquista-codeina-linctus-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-codeina-online/">ta-codeina-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-demerol-online/">acquista-demerol-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-depalgo-online/">acquista-depalgo-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-diazepam-online/">acquista-diazepam-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/">acquista-dilaudid-8mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-endocet-online/">acquista-endocet-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/">acquista-eroina-bianca</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/">acquista-l-ritalin-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-opana-online/">acquista-opana-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-vicodin-online/">acquista-vicodin-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/">acquista-xanax-2mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/">acquistare-rohypnol-2mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/">acquistare-sibutramina-online</a>;
<a href="https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/">efedrina-hcl-in-polvere</a>;
<a href="https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/">sciroppo-di-metadone</a>;
<a href="https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/">tramadolo-hcl-200mg</a>;

 


<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/&quot; rel="dofollow">acquista-ozempic-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/&quot; rel="dofollow">acquista-victoza-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/&quot; rel="dofollow">acquista-mounjaro-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/&quot; rel="dofollow">acquista-mysimba-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/&quot; rel="dofollow">acquista-wegovy-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/&quot; rel="dofollow">acquistare-saxenda-6mg-ml-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/&quot; rel="dofollow">acquista-phentermine-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/&quot; rel="dofollow">acquistare-sibutramina-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/&quot; rel="dofollow">ephedrine-hcl-30mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/&quot; rel="dofollow">acquista-adderall-30mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/&quot; rel="dofollow">acquista-adipex-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/&quot; rel="dofollow">acquista-vyvanse-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/&quot; rel="dofollow">acquista-ossicodone-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/&quot; rel="dofollow">acquista-oxycontin-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/&quot; rel="dofollow">acquista-percocet-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/&quot; rel="dofollow">acquista-stilnox-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/&quot; rel="dofollow">acquista-suboxone-8mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/&quot; rel="dofollow">acquista-subutex-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/&quot; rel="dofollow">acquista-metadone</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/&quot; rel="dofollow">acquista-botox-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/&quot; rel="dofollow">acquista-adma-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/&quot; rel="dofollow">a-215-ossicodone-actavis</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/&quot; rel="dofollow">acquista-ativan-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/&quot; rel="dofollow">acquista-cerotti-al-fentanil</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/&quot; rel="dofollow">acquista-codeina-linctus-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/&quot; rel="dofollow">acquista-codeina-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/&quot; rel="dofollow">acquista-demerol-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/&quot; rel="dofollow">acquista-depalgo-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/&quot; rel="dofollow">acquista-diazepam-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/&quot; rel="dofollow">acquista-dilaudid-8mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/&quot; rel="dofollow">acquista-endocet-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/&quot; rel="dofollow">acquista-eroina-bianca</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/&quot; rel="dofollow">acquista-opana-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/&quot; rel="dofollow">acquista-vicodin-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/&quot; rel="dofollow">acquista-xanax-2mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/&quot; rel="dofollow">efedrina-hcl-in-polvere</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/&quot; rel="dofollow">sciroppo-di-metadone</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/&quot; rel="dofollow">tramadolo-hcl-200mg</a>

https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/


<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/&quot; rel="dofollow">acquista-ozempic-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/&quot; rel="dofollow">acquista-victoza-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/&quot; rel="dofollow">acquista-mounjaro-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/&quot; rel="dofollow">acquista-mysimba-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/&quot; rel="dofollow">acquista-wegovy-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/&quot; rel="dofollow">acquistare-saxenda-6mg-ml-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/&quot; rel="dofollow">acquista-phentermine-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/&quot; rel="dofollow">acquistare-sibutramina-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/&quot; rel="dofollow">ephedrine-hcl-30mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/&quot; rel="dofollow">acquista-adderall-30mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/&quot; rel="dofollow">acquista-adipex-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/&quot; rel="dofollow">acquista-vyvanse-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/&quot; rel="dofollow">acquista-ossicodone-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/&quot; rel="dofollow">acquista-oxycontin-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/&quot; rel="dofollow">acquista-percocet-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/&quot; rel="dofollow">acquista-stilnox-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/&quot; rel="dofollow">acquista-suboxone-8mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/&quot; rel="dofollow">acquista-subutex-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/&quot; rel="dofollow">acquista-metadone</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/&quot; rel="dofollow">acquista-botox-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/&quot; rel="dofollow">acquista-adma-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/&quot; rel="dofollow">a-215-ossicodone-actavis</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/&quot; rel="dofollow">acquista-ativan-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/&quot; rel="dofollow">acquista-cerotti-al-fentanil</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/&quot; rel="dofollow">acquista-codeina-linctus-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/&quot; rel="dofollow">acquista-codeina-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/&quot; rel="dofollow">acquista-demerol-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/&quot; rel="dofollow">acquista-depalgo-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/&quot; rel="dofollow">acquista-diazepam-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/&quot; rel="dofollow">acquista-dilaudid-8mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/&quot; rel="dofollow">acquista-endocet-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/&quot; rel="dofollow">acquista-eroina-bianca</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/&quot; rel="dofollow">acquista-opana-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/&quot; rel="dofollow">acquista-vicodin-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/&quot; rel="dofollow">acquista-xanax-2mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/&quot; rel="dofollow">efedrina-hcl-in-polvere</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/&quot; rel="dofollow">sciroppo-di-metadone</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/&quot; rel="dofollow">tramadolo-hcl-200mg</a>

Scooped by Dr. Stefan Gruenwald
Scoop.it!

Liquid-in-liquid printing method could put 3D-printed organs within reach

Liquid-in-liquid printing method could put 3D-printed organs within reach | Amazing Science | Scoop.it
New technique makes it easier to build stable “tissues”

 

3D-printed tissues and organs could revolutionize transplants, drug screens, and lab models—but replicating complicated body parts such as gastric tracts, windpipes, and blood vessels is a major challenge. That’s because these vascularized tissues are hard to build up in traditional solid layer-by-layer 3D printing without constructing supporting scaffolding that can later prove impossible to remove.

 

One potential solution is replacing these support structures with liquid—a specially designed fluid matrix into which liquid designs could be injected before the “ink” is set and the matrix is drained away. But past attempts to make such aqueous structures have literally collapsed, as their surfaces shrink and their structures crumple into useless blobs.

 

So, researchers from China turned to water-loving, or hydrophilic, liquid polymers that create a stable membrane where they meet, thanks to the attraction of their hydrogen bonds. The researchers say various polymer combinations could work; they used a polyethylene oxide matrix and an ink made of a long carbohydrate molecule called dextran. They pumped their ink into the matrix with an injection nozzle that can move through the liquid and even suck up and rewrite lines that have already been drawn. The resulting liquid structures can hold their shape for as long as 10 days before they begin to merge, the team reported last month in Advanced Materials.

 

Using their new method, the researchers printed an assortment of complex shapes—including tornadoesque whirls, single and double helices (above), branched treelike shapes, and even one that resembles a goldfish. Once printing is finished, the shapes are set by adding polyvinyl alcohol to the inky portion of the structure. That means, the scientists say, that complex 3D-printed tissues made by including living cells in the ink could soon be within our grasp.

 
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

These amazing Met Gala fashion took more than a thousand hours of 3D printing

These amazing Met Gala fashion took more than a thousand hours of 3D printing | Amazing Science | Scoop.it

The fund-raising event for the Metropolitan Museum of Art in New York is famous  for the impressive, wild, and avant-garde looks worn by some of the biggest celebrities. This year, five of the outfits flaunted massive 3D-printed components, all created by designer Zac Posen in collaboration with GE Additive and Protolabs.

 

The four gowns and one headdress, worn by the likes of Jourdan Dunn and Katie Holmes, took six months to put together. Each of the women wearing the 3D-printed outfits was scanned in advance to ensure that the pieces could be modeled with design software to perfectly fit her body.

 

The pieces were primarily created using stereolithography (SLA) to get the high-quality finishes Posen was seeking. This method of 3D printing uses an ultraviolet laser to slowly cure a pool of resin. One layer at a time, the laser fires into the resin in a pattern dictated by a computer in which the 3D model has been loaded. The result is a hardened, smooth sculpture that is then painted or polished.

 

The most intensive look, modeled after rose petals and worn by British model Jourdan Dunn, took more than 1,100 hours to create. “We never intended for these parts to be easy, and we wanted to push the limit a bit,” says Eric Utley, an applications engineer at Protolabs.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Researchers develop portable 3D skin printer to repair deep wounds within 2 minutes or less

Researchers develop portable 3D skin printer to repair deep wounds within 2 minutes or less | Amazing Science | Scoop.it

University of Toronto researchers have developed a handheld 3D skin printer that deposits even layers of skin tissue to cover and heal deep wounds. The team believes it to be the first device that forms tissue in situ, depositing and setting in place, within two minutes or less.

 

The research, led by PhD student Navid Hakimi under the supervision of Associate Professor Axel Guenther of the Faculty of Applied Science & Engineering, and in collaboration with Dr. Marc Jeschke, director of the Ross Tilley Burn Centre at Sunnybrook Hospital and professor of immunology at the Faculty of Medicine, was recently published in the journal Lab on a Chip.

 

For patients with deep skin wounds, all three skin layers – the epidermis, dermis and hypodermis – may be heavily damaged. The current preferred treatment is called split-thickness skin grafting, where healthy donor skin is grafted onto the surface epidermis and part of the underlying dermis.

 

Split-thickness grafting on large wounds requires enough healthy donor skin to traverse all three layers, and sufficient graft skin is rarely available. This leaves a portion of the wounded area “ungrafted” or uncovered, leading to poor healing outcomes.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Doctors Are 3D Printing Ear Bones To Help With Hearing Loss

Doctors Are 3D Printing Ear Bones To Help With Hearing Loss | Amazing Science | Scoop.it

By printing custom bone prostheses, researchers hope they can better fix a certain kind of hearing loss.

 

The auditory ossicles of the middle ear – the malleus, incus and stapes – are the tiniest bones in the human body. All three can fit on a dime, with room to spare. Their job is to transmit sounds from the ear drum to the liquid of the inner ear. Illnesses, accidents and tumors can damage these bones, causing what’s known as “conductive hearing loss.” The remedy is a delicate surgery, in which the bones are replaced with a tiny prosthesis. But the surgery has a relatively high failure rate, about 25 to 50 percent.

 

Now, researchers at the University of Maryland Medical Center are using 3D printers to make custom-fitted ear bones. They hope these prostheses will improve on the current technology and raise the success rate of surgery.

 

The team, made up of a radiologist and two ear, nose and throat doctors, took the ossicles from three human cadavers and removed the middle bones, or incuses. They then used a CT scanner to take images of the gaps left by the incuses, and designed tiny prostheses to fit those gaps. The prostheses varied by just fractions of millimeters, with ever so slightly different angles. The researchers then gave four different surgeons the three prostheses and had them guess which one went in which ear. Each surgeon independently matched the prostheses to the correct ears.

 

“They said it wasn’t that hard to figure out,” says Jeffrey Hirsch, a radiology professor who led the research. “It was almost like a Goldilocks sort of thing – this prosthesis was too tight in this ear and too loose in this ear, but in this ear it’s just right.”

 

The research was published recently in the journal 3D Printing in Medicine.  The next step will be to test the prostheses for function using cadavers or animal models. They can run vibrations through a prosthesis to see how it transmits sound.

Chris L Hoffmann, AuD.'s comment, November 12, 2019 11:43 PM
This will Bring revolution In the field of audiology
Rescooped by Dr. Stefan Gruenwald from Daily Magazine
Scoop.it!

3D-printed ovaries restore fertility in mice

3D-printed ovaries restore fertility in mice | Amazing Science | Scoop.it
 

 

Fans of 3D printing say it has the potential to revolutionize medicine—think 3D-printed skin,ears, bone scaffolds, and heart valves. Now, prosthetic ovaries made of gelatin have allowed mice to conceive and give birth to healthy offspring. Such engineered ovaries could one day be used to help restore fertility in cancer survivors rendered sterile by radiation or chemotherapy.

 

This “landmark study” is a “significant advance in the application of bioengineering to reproductive tissues,” says Mary Zelinski, a reproductive scientist at the Oregon National Primate Research Center in Beaverton who was not involved with the work.

 

The researchers used a 3D printer with a nozzle that fired gelatin, derived from the collagen that’s naturally found in animal ovaries. The scientists built the ovaries by printing various patterns of overlapping gelatin filaments on glass slides—like building with Lincoln Logs, but on a miniature scale: Each scaffold measured just 15 by 15 millimeters. The team then carefully inserted mouse follicles—spherical structures containing a growing egg surrounded by hormone-producing cells—into these “scaffolds.” The scaffolds that were more tightly woven hosted a higher fraction of surviving follicles after 8 days, an effect the team attributes to the follicles having better physical support.

 

The researchers then tested the more tightly woven scaffolds in live mice. The researchers punched out 2-millimeter circles through the scaffolds and implanted 40–50 follicles into each one, creating a “bioprosthetic” ovary. They then surgically removed the ovaries from seven mice and sutured the prosthetic ovaries in their place. The team showed that blood vessels from each mouse infiltrated the scaffolds. This vascularization is critical because it provides oxygen and nutrients to the follicles and allows hormones produced by the follicles to circulate in the blood stream.  

 

The researchers allowed the mice to mate, and three of the females gave birth to healthy litters, the team reports today in Nature Communications. The mice that gave birth also lactated naturally, which demonstrated that the follicles embedded in the scaffolds produced normal levels of hormones.


Via THE OFFICIAL ANDREASCY
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Scientist Resurrects Ancient Creatures by 3D-Printing Them in Metal

Scientist Resurrects Ancient Creatures by 3D-Printing Them in Metal | Amazing Science | Scoop.it

Over the past few years, we’ve seen 3D printing prove itself an invaluable resource for engineers. It’s helped us build prosthetics, instruments, drones and a mini jet engine that can blast at 33,000 RPM. But in the hands of creatives, the hackable tech has done something else entirely: allowed them to make unbelievable art. For University of Chicago assistant professor Dr. Allan Drummond, that art comes in the form of resurrecting ancient beasts.

 

A biochemistry and human genetics researcher, Drummond studies everything from how cells adapt, to the multi-million-year evolution of the species we share our planet with. It’s no surprise then, that he took a particular interest in trilobites. The extinct arthropods cruised the world’s oceans for some 270 million years – with over 17,000 known species, they are the most diverse group of animals preserved in the fossil record.

“We find their shells fossilized everywhere,” explains Drummond. “They’re museum staples – but we rarely see what they really looked like, with all of their soft tissues (legs, antennae, gills) intact.”

 

Determined to print a trilobite in all its glory, Drummond turned to the literature and online forums for guidance. “The first step was to look at as many trilobites as possible and choose one,” he recalls. “I’ve always loved these fossils, but the moment they turned from fossils, into living organisms for me, was when I saw the new generation of preparations displayed at Chicago’s Field Museum. I couldn’t believe what I was seeing. In my mind, trilobites were flat, if beautiful, primitive creatures. Seeing those preparations made it clear how not-flat and not-primitive they were.”

 

In order to narrow down the options, Drummond eliminated any trilobite groups with delicate spines – which many of them had – that would easily break, as well as any that were too simple to print with extensive detail. He settled on Ceraurus, a genus that roamed the Earth in the middle to upper Ordovician, 470-445 million years ago.

 

Ceraurus is ideal,” he says. “They have long yet substantial genal [head segement] and pygidial [tail segment] spines, complex thoracic armor, gorgeous curves, unmistakable trilobite form. Enough detail to warrant 3D printing, enough structural solidity to survive it.”

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

You can now 3D print one of the world’s lightest materials

You can now 3D print one of the world’s lightest materials | Amazing Science | Scoop.it

Aerogels are among the world’s lightest materials. Graphene aerogel, a record holder in that category, is so light that a large block of it wouldn’t make a dent on a tiny ball of cotton. Water is about one thousand times more dense. The minimal density of aerogels allows for a number of possible applications, researchers have found, ranging from soaking up oil spills to “invisibility” cloaks.

 

Now, scientists from State University of New York (SUNY) at Buffalo and Kansas State University report in the journal Small that they have found a way to 3D print graphene aerogel, which has only been used in lab prototypes. This technology will make the material much easier to use, and open it, and hopefully other aerogel materials, up to wider applications.

 

Graphene is just a single layer of carbon atoms. Since it was isolated for the first time in 2004, it has been touted as a wonder material for its strength, pliability and conductivity. Aerogel is essentially a gel where the liquid is replaced by air. Graphene aerogel is known to be highly compressible (so it can bear pressure without breaking apart) and highly conductive (so it can carry electricity efficiently). The very structure of the material that gives it these properties, however, makes it difficult to manufacture using 3D printing technology.

 

SUNY Buffalo and Kansas State University researchers came up with a solution. They mixed graphene oxide—graphene with extra oxygen atoms—with water and deposited layers on a surface at -25°C. This instantly froze each layer, and allowed the undisrupted construction of the aerogel, with ice as its support.

Miro Svetlik's curator insight, March 3, 2016 10:14 AM
3D Printing aerogels containing graphene? This material gets some interesting properties. While it is quite hard to manufacture in a controlled fashion I believe it will open the way for compressible circuits.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Building a Robot Which Can 3D Print A Steel Bridge In Mid-Air Without Human Intervention

Building a Robot Which Can 3D Print A Steel Bridge In Mid-Air Without Human Intervention | Amazing Science | Scoop.it

In 2017, Dutch designer Joris Laarman will wheel a robot to the brink of a canal in Amsterdam. He'll hit an "on" button. He'll walk away. And when he comes back two months later, the Netherlands will have a new, one-of-a-kind bridge, 3-D printed in a steel arc over the waters. This isn't some proof-of-concept, either: when it's done, it will be as strong and as any other bridge. People will be able to walk back and forth over it for decades.


That's the plan, anyway. To make his dream a reality, Laarman has created a new research and development company called MX3D, which specializes in building six-axis robots that can 3-D print metal and resin in mid-air. The tech allows for large-scale objects like infrastructure to be printed in the exact spot where they'll live, which has radical implications for the construction industry and opens up a wealth of new design possibilities.


MX3D isn't some high-tech concept; it actually works. In February 2014, Laarman showed off the MX3D system's ability to 3-D printgravity-defying metal sculptures in mid-air. But printing out a bridge on location is a decidedly different challenge than 3-D printing something in a lab.


"We thought to ourselves: what is the most iconic thing we could print in public that would show off what our technology is capable of?" Laarman says in a phone interview. "This being the Netherlands, we decided a bridge over an old city canal was a pretty good choice. Not only is it good for publicity, but if MX3D can construct a bridge out of thin air, it can construct anything."


The finished bridge will be around 24 feet long, support normal Amsterdam foot traffic, and feature a beautiful, intricate design that looks far more handcrafted than the detailing on most bridges. Because 3-D printing allows for a granular control of detail that industrial manufacturing does not, designs can be much more ornate, and almost bespoke in appearance.


Most 3-D printers use resin or plastic to construct objects. MX3D's bridge will be made of a new steel composite that the University of Delft created. As strong as regular steel, it can be dolloped out by a 3-D printer, drop by drop. The result? A 3-D printed bridge as strong as any other, Laarman says.


As for the printer: it isn't much like a Makerbot or any other desktop 3-D printer. For one thing, it has no printer bed. Instead, it works like a train. Except instead of running along existing tracks, it can actually print out its own tracks as it goes along. An additive printing technology that is more like welding than squirting out drops of plastic means that the tracks can go in any direction: not just horizontally, but vertically and diagonally as well. That allows the MX3D to cross gaps, like the empty space between walls, or the banks on a river, just by printing its way across them. A useful skill for a robot to have if it wants to 3-D print a bridge, or any other large structure, for that matter.

TJ Allard's curator insight, July 27, 2015 10:44 AM

I can already see the battle with the Steel Workers' Union looming in the distance. (they tuk yer jobs!)

Scooped by Dr. Stefan Gruenwald
Scoop.it!

Seven life-changing surgeries made possible by 3D printing in 2014

Seven life-changing surgeries made possible by 3D printing in 2014 | Amazing Science | Scoop.it

Though printing items like chocolate and pizza might be satisfying enough for some, 3D printing still holds a lot of unfulfilled potential. Talk abounds of disrupting manufacturing, changing the face of construction and even building metal components in space. While it is hard not to get a little bit excited by these potentially world-changing advances, there is one domain where 3D printing is already having a real-life impact. Its capacity to produce customized implants and medical devices tailored specifically to a patient's anatomy has seen it open up all kinds of possibilities in the field of medicine, with the year 2014 having turned up one world-first surgery after another. Let's cast our eye over some of the significant, life-changing procedures to emerge in the past year made possible by 3D printing technology.

No comment yet.
Rescooped by Dr. Stefan Gruenwald from 21st Century Innovative Technologies and Developments as also discoveries, curiosity ( insolite)...
Scoop.it!

Incredibly Small 3D Printed Middle Ear Prosthesis is Achieved on a 3D Systems Printer

Incredibly Small 3D Printed Middle Ear Prosthesis is Achieved on a 3D Systems Printer | Amazing Science | Scoop.it

3D printing has been providing various forms of prosthetic devices such as fingers, hands, arms and legs for a short time now, mostly due to the fact that it is affordable, easy to use, faster than traditional manufacturing, and provides for total customization. Companies are also really beginning to see the potential of 3D printing in the rapid prototyping of medical products.


One company, Potomac Laser, has been in the business of specializing in and creating medical devices, as well as other unique electronic devices for over 32 years now. Located in Baltimore, Maryland, they use 3D printing, laser micromachining, micro CNC and micro drilling in their many unique projects.


Just recently, a woman by the name of Monika Kwacz, who is a researcher at the Institute of Micromechanics and Photonics at Warsaw Technical University in Poland, contacted Potomac Laser to see if they could help her 3D print something almost unheard of. She had been studying stapedotomy, which is a form of surgical procedure that aims at improving hearing loss in those who suffer from the fixation of their stapes. The stapes, which is one of the 3 tiny bones within the middle ear involved in the conduction of sound vibrations to the inner ear, is the smallest and lightest bone within the human body.


Millions of peoples in the US alone suffer from a condition called Otosclerosis, where the stapes becomes stuck in a fixed position, and can no longer efficiently receive and transmit vibrations needed for a subject to hear properly. This is mostly due to a mineralization process of the bone and surrounding tissue.  It is estimated that 10% of the world’s adult Caucasian population suffers from this condition in one form or another.


Via Gust MEES
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Researchers Combine Ideas of 3D Printing With Molecular Self-assembly – Is Molecular Manufacturing Next?

Researchers Combine Ideas of 3D Printing With Molecular Self-assembly – Is Molecular Manufacturing Next? | Amazing Science | Scoop.it

What’s the ultimate extension of 3D printing technology? Where could 3D printing take us in the future? Eventually, we will have nano-factories, 3D printing at the molecular level. We will be able to turn our garbage into just about anything we want, via a sophisticated computer system, along with hardware capable of breaking any mass down to its molecular level, before using those molecules to construct a brand new object.


The two men have now combined the ideas of 3D printing with that of molecular self assembly to create a process which they call ‘genetic 3D printing’. For those who are not biologists, molecular self assembly is simply the process in which molecules arrange themselves in a particular order without guidance from an outside source. Molecular self assembly is a bottom-up approach like that of 3D printing. The discovery, which was accidental, allowed the researchers to create proteins which have the ability to self assemble into fibers. The discovery was made while they were simply trying to produce gluten adhesives, by cutting out a section of the gluten protein. What happened next surprised them. When the section of the protein was removed, fibers self assembled themselves in the beaker.


The quality of the fibers were on par with those produced by silk spiders, something which researchers have been trying to produce for years. Spider silk has a strength-to-weight ratio which is five times that of steel, making it an ideal material for all sorts of applications. The researchers went back and realized that they can manipulate the protein structures of the fibers to change their colors, but this wasn’t all. By combining the gluten protein with other proteins, they are able to molecularly print fibers with varying electrical properties, strengths and colors. In ordinary 3D printing, individuals use a software to translate a computer code and raw material into a physical object. In this case the researchers found that they were able to use a genetic blueprint as their computer code and back-calculate the DNA, which was inserted into a host bacterium, in this case e-coli. From there, the protein (raw material) grew, left the cell, and interacted with one another to build the fibers which the researchers had predetermined.


If this seems amazing, both Barone and Senger believe that they could eventually utilize this method as a way to molecularly manufacture all sorts of objects. Because the protein fibers are natural building blocks, once a method is figured out in which they are able to get the fibers to organize into larger structures, anything could be possible. From a coffee pot, to human bone, or even muscle, the researchers believe that one day this method of 3D printing fibers could manufacture it all. The researchers are currently working to further their discovery, and produce the silk-like fibers in large quantity for a variety of uses.  Additionally they are looking for ways to increase the size of each fiber, eventually enabling the manufacturing of larger objects.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

How 3D Printing Creates On-Demand Swarms of Disposable Drones

How 3D Printing Creates On-Demand Swarms of Disposable Drones | Amazing Science | Scoop.it

New advances in 3D printing are making it not only possible but also viable to manufacture cheap, print-on-demand, disposable drones designed simply to soar off over the horizon and never come back. Some British engineers did just that, and this is only the beginning. The team hails from the Advanced Manufacturing Research Center (AMRC) at the University of Sheffield, where they're exploring innovative ways to 3D-print complex designs. They built their disposable drone, a five-foot-wide guy made of just nine parts that looks like a tiny stealth bomber, using a technique called fused deposition modeling. This additive manufacturing technique has been around since the 1980s but has recently become faster and cheaper thanks to improved design processes.


The ultimate vision, as sUAS describes it, is for "cheap and potentially disposable UAVs that could be built and deployed in remote situations potentially within as little as 24 hours." Forward-operating teams equipped with 3D printers could thus generate their own semi-autonomous micro air force squadrons or airborne surveillance swarms, a kind of first-strike desktop printing team hurling disposable drones into the sky.


For now, the AMRC team's drone works well as a glider, and they're working on a twin ducted fan propulsion system. It will eventually get an autonomous operation system powered by GPS as well as on-board data logging of flight parameters. Presumably, someone will want to stick a camera on there, too. If they're successful at building these things cheaply enough, it will be a green flag for the rest of the industry to take a hard look at their designs and see if they can make a disposable drone, too.

Eli Levine's curator insight, April 4, 2014 10:36 PM

This is going to get ugly.

 

The arms race between the people and the government is just beginning. 

 

Cause, I can think of all sorts of mayhem that can be raised with this technology, all of it spontaneously generated from the conditions in which people are living, caused primarily by our elite factions, public and private alike.

 

You SURE you want to be holding those reigns of "power" when they come for you?

 

Think about it.